
Model checking detectability of attacks in
multiagent systems

Ioana Boureanu
Department of Computing

Imperial College London, UK
ibourean@imperial.ac.uk

Mika Cohen
Department of Computing

Imperial College London, UK
mcohen1@imperial.ac.uk

Alessio Lomuscio
Department of Computing

Imperial College London, UK
a.lomuscio@imperial.ac.uk

ABSTRACT
Information security is vital to many multiagent system ap-
plications. In this paper we formalise the notion of de-
tectability of attacks in a MAS setting and analyse its appli-
cability. We introduce a taxonomy of detectability specifi-
cations expressed in temporal-epistemic logic. We illustrate
the practical relevance of attack detectability in a case study
applied to a variant of Kerberos protocol. We model-check
attack detectability in automatically generated MAS models
for security protocols.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model checking

General Terms
Verification, Security

Keywords
Verification of MAS; Logics of Agency; Logic-based ap-
proaches and methods; Privacy, safety and security; Formal
models of agency

1. INTRODUCTION
Security is an essential component to several multiagent

system (MAS) applications including online trading [23],
web-services [9], negotiation systems [19], self-healing sys-
tems, etc. Manually validating security requirements is a
notoriously difficult and error-prone task. To surpass this
difficulty tools have been developed to verify security proto-
cols, to identify possible attacks [1, 2, 3, 4, 18, 10].

While being able to discover attacks automatically is obvi-
ously important, protocols that are known to be susceptible
to attacks (e.g., IPSec, WEP, GSM, DNS, SSH1, Kerberos,
etc.) remain in widespread use at least in some applications.
In some cases the cost of protocol redeployment over large
multi-agent distributed applications is too high to justify
the benefit. Other times hardware, software, or standards
constraints make it impossible to deploy other protocols on
some applications.

Cite as: Model checking detectability of attacks in multiagent systems,
I. Boureanu, M. Cohen, A. Lomuscio, Proc. of 9th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010),
van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14,
2010, Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

If we are prepared to accept that in some cases the system
will be compromised, it becomes of paramount importance
to detect when this happens. Detecting that an attack has
happened, or identifying some early signs of an attack being
attempted, could be fundamental to limiting the damages to
the system. Having the ability to detect attacks could itself
be a deterrent for the attacks to be carried out. Even more
so if the culprit of the attack could be identified. When are
attacks detectable then? In security it is assumed that when
an attack is successful the frauded party does not learn an
attack has taken place. However, attacks may leave groups
of agents with sufficient collective information to infer that
an attack has taken place.

Just as verifying whether protocols are secure is a question
competently answered by means of automatic tools, it turns
out that checking the detectability of attacks is also difficult
to check manually.

In this paper we show how attack detectability can be ver-
ified automatically in a MAS setting. To fix the technical
details, here we focus on a class of widespread security pro-
tocols, e.g., authentication and key-establishment protocols
and on attacks carried out on them. However our analysis
can be extended to higher-level, dedicated protocols, e.g.,
protocols for web-services, e-voting, e-commerce etc. We
only focus on the information-theoretic notion of detectabil-
ity here (i.e., whether or not a group of agents has sufficient
information to deduce an attack has taken place); we leave
for further work the actual, protocol-dependent synthesis of
communication steps to make this notion explicit.

The rest of the paper is structured as follows. Section 2
provides the required background on the formal MAS frame-
work and logics used, on security protocols, and on a mod-
elling of protocol executions as MAS as per [5]. Section 3
presents a taxonomy of specifications in temporal-epistemic
logic formalising attack detectability in a group of agents.
In Section 4 we illustrate the practical relevance of the in-
troduced detectability specifications in a case study on KSL,
a variant of the Kerberos protocol. Section 5 uses a recent
toolkit put forward in [5] to verify automatically attack de-
tectability for KSL and for other well-known security proto-
cols. Finally Section 6 concludes and considers future work.

2. INTERPRETED SYSTEMS, CTLK AND
SECURITY PROTOCOLS

Interpreted systems and temporal epistemic logic.
The interpreted systems (IS) formalism [11] is a seman-
tics for multiagent systems. We summarise its basic defi-
nitions. We assume a set A = {1, . . . , n} of agents and a

691

691-698

special agent called the Environment, abbreviated E. We
associate to each agent i ∈ A a set Li of possible local
states and a set Acti of local actions. A protocol function
Pi : Li → 2Acti defines for each local state li the set of ac-
tions enabled at li. For the environment we associate similar
sets LE , ActE , and a protocol function PE . The local tran-
sitions of agent i are defined by the evolution function ti :
Act1 × . . .×Actn ×ActE → 2Li×Li . The evolution function
tE of the environment is defined in a similar way. To describe
the system as a whole we define a set of possible global states
G =

Q

1≤i≤n Li×LE , a joint protocol P = (P1, . . . , Pn, PE),
joint actions Act = Act1 × . . .×Actn ×ActE , a global evolu-
tion function t = (t1, . . . , tn, tE) operating on global states.

An interpreted system is a tuple I =
˙

G, P , t, I0, V
¸

,
where I0 ⊂ G is a set of initial global states describing the
initialization of the system, and V : G → 2AP is a valuation
function for a set of atomic propositions AP .

The joint protocol and the joint evolution function induce
a transition relation between any two possible global states.
A (computation) path is a sequence of global states in which
each two adjacent states are in the transition relation.

We associate to each agent i an epistemic indistinguisha-
bility relation over global states ∼i ⊆ G×G such that g ∼i g′

iff gi = g′
i, agent i is in the same local state in both g and g′.

In more detail, the relation ∼i denotes that agent i cannot
differentiate between states g and g′ as it holds the same
information gi or g′

i at each of the two states. For groups of
agents G ⊆ A, the indistinguishability relation is extended
naturally to g ∼G g′. Global state g is indistinguishable by
group G from global state g′ iff by using the information of
all members of the group, the states (still) cannot be differ-
entiated: g ∼G g′ iff g ∼i g′, for each agent i member of the
group G.

We use a logic that combines a fragment of branching–
time logic CTL and the modal system S5n with a knowledge
operator Ki for each agent i and a group–knowledge opera-
tor DG for each group G of agents. Formally, our language
L is defined as follows:

ϕ, ψ := p | ¬ϕ |ϕ ∧ ψ |Kiϕ |DGϕ |AG ϕ |AF ϕ |A(ϕWψ),

where p ranges over atomic propositions in AP . The knowl-
edge operators Ki and DG are read“agent i knows that”and
“the group G of agents collectively knows that” respectively.
The CTL quantifier over paths A is read “along every com-
putation path”. The path–specific quantifiers G, F and W
are read“always”,“eventually”and“(weak) until”or“unless”
respectively.

We give some examples of interpreting formulae in the
language L over the IS semantics. Consider an arbitrary
IS model I. For instance, satisfaction under I of the CTL
formula A(φ W ψ) in L is as follows: (I, g) |= A(φ W ψ)
iff for all paths g0, g1, . . . in I with g = g0 it holds that
(I, gi) |= ψ and (I, gj) |= φ for some i ≥ 0 and for all j ≤ i
or, it holds that (I, gi) |= φ for all i ≥ 0. Another example
of satisfaction under I is that of epistemic formula DGφ in
L, as follows: (I, g) |= DGφ iff for all states g′ such that
g ∼G g′ it holds that (I, g′) |= φ.

Security protocols. A security protocol specifies a se-
quence of data exchanges aimed at delivering some security
related goal through the use of cryptographic primitives.
Security protocols are often described using informal Al-
ice&Bob notation [22]. To illustrate, consider the Alice&Bob
notation for the well–known Needham Schroeder Public Key

(NSPK) protocol [20]:

1. A → B : {A, NA}pub(B)

2. B → A : {NA, NB}pub(A)

3. A → B : {NB}pub(B)

Two protocol roles are implied by the NSPK description:
the role of A and the role of B. A participant playing the
role of A encrypts its name and its nonce1 NA with the
public key pub(B) of a B–role participant, and sends the
resulting encryption {A, NA}pub(B) to this B–role partici-
pant. The participant playing the role of A then waits for a
message encrypted with its own public key pub(A), contain-
ing its own nonce NA and a new nonce NB . Following this,
the participant proceeds in his A–role by encrypting the re-
ceived nonce NB with the public key pub(B) and sending
this encryption back to NB ’s originator, the B–role player.
Dually to an A–role, the first action of a participant playing
a B–role is awaiting for a message encrypted with its own
public key pub(B), etc.

A protocol is equipped at design time with a number of
security requirements. These depict the purpose of the pro-
tocol: authentication, secrecy, anonymity, etc. For example,
a custom authentication requirement for NSPK is that when
the participant playing the B–role has performed all its three
steps it knows with whom it shares values NA and NB .

Interpreted system protocol–model. The Alice&Bob
notation describes the sequence of messages exchanged dur-
ing a single protocol session executed between honest partic-
ipants. In contrast, participants in deployed protocols may
engage simultaneously in multiple, parallel sessions with dif-
ferent interlocutors. In more detail, the same identity may
be simultaneously a participant in several sessions, playing
a distinct role in each, manipulating different data, multiple
keys etc. Moreover, it is assumed that all deployed proto-
cols are executed in a hostile environment. In order to sub-
vert the protocol, an intruder can always intercept messages,
manipulate data (e.g., encrypt, decrypt, sign and generate
nonces), challenge participants to engage in multiple sessions
and to persue certain actions etc.

Given the above, we view multisession executions of pro-
tocols as a multiagent system. Each agent is characterized
by his identity, the principal whom he represents, and by his
role, the protocol role that it plays. A model for a possible
NSPK multisession execution includes two agents represent-
ing principal alice and two agents representing principal bob;
one of the agents identified as alice plays the A–role while
the other agent of alice’s plays the B–role. Similarly for
bob’s agents. Along the lines of [5], we formalise this MAS
model for protocol executions by associating an interpreted
system semantics to it:

• The local state of an agent contains the variables that
appear in the role played by the agent, e.g., variables
A, B, NA and NB for the A-role of NSPK protocol.
In addition, the local state includes a counter variable
Step which indicates at what step in the protocol ex-
ecution the agent is.

• The local protocol of an agent is defined according to
the underlying role of the agent: at a certain step,
the protocol selects an action either of sending or of
receiving a message.

1“number once used”, i.e., random, unpredictable value.

692

• The local evolution function specifies the update of the
local state as messages are sent and received. For ex-
ample in the case of NSPK, if agent ag is playing the
role of A and ag receives the encryption {(v1, v2)}v3

at step 2, then her evolution function first dictates the
check whether v3 received is indeed her public key, then
the check whether v1 received is indeed the value pre-
viously sent by ag as NA. If these checks succeed, the
evolution function sets the value of ag’s local variable
NB to the value v2 received and increments her local
Step variable.

• The Environment encodes a Dolev-Yao [7] intruder
that controls the communication medium: the intruder
can intercept and insert messages on the medium, but
can only perform cryptographic operations (encrypt,
decrypt, sign, etc.) if it has the relevant keys.

Security requirements and attacks. Security require-
ments are most often formalised as simple invariants (state
predicates). In this paper, we assume that each security
requirement of interest appears as an atomic proposition
p in the interpreted system protocol model, but we leave
the interpretation open. We emphasise however that the
detectability specifications introduced in the next section
apply equally to more complex, temporal–epistemic require-
ments for privacy, receipt-freeness, etc.

Authentication requirement. A standard formulation for
an authentication requirement is: whenever an agent i has
performed (at least) N execution steps, there is a different
agent j that agrees with agent i on the values of variables
in a selected set Ξ

auth@N(i, Ξ) =df i.Step ≥ N →
_

j

agree(i, j, Ξ)

where j ranges over agents different from i and agree(i, j, Ξ)
abbreviates

V

X∈Ξ

(i.X = j.X). We will implicitly assume that

Ξ includes variables for the intended communication part-
ners. For example, for NSPK auth@3(i, {NA}) abbreviates
auth@3(i, {A, B, NA}). This denotes that once all three exe-
cution steps of agent i have been completed, the agent shares
the value i.NA with its intended communication partner.

An attack against a security requirement p is an execution
trace that refutes p. We say that an attack on p has occurred
whenever p fails in the above sense.

Attack on authentication. An attack on the authentica-
tion requirement auth@N(i, Ξ) has occurred if and only if
there is an execution where agent i has completed N steps
and there is no other agent j that agrees with i on the vari-
ables Ξ:

i.Step ≥ N ∧ ¬
_

j

agree(i, j, Ξ)

Intended goals and pre–goals. For each protocol a
set of security requirements is explicitly specified at design
time. These stipulate the intended goals of the protocol.
In this sense, an attack on any of these is an attack on
the protocol. Typically the intended goals of a protocol
concern the final state of agents in some execution, e.g.,
the requirement auth@3(i, {NA, NB}) illustrated above for
NSPK.

However, intended goals are achieved gradually through-
out a protocol execution. If an intended goal holds at a final
step of an agent in an execution, it is expected that meaning-
ful parts of that goal held at some intermediate steps of the
agent, i.e., previously in that execution. We use pre-goals
to denote (implicit) requirements that express parts of in-
tended goals considered at intermediate execution steps. We
illustrate below a possible derivation method for pre–goals
given the protocol description and the intended goals.

Derivation of pre-goals. Assume the set of intended
goals includes the authentication requirement auth@N(i, Ξ).
We derive a pre–goal auth@N ′(i, Ξ′) for each N ′ ≤ N and
each subset Ξ′ ⊆ Ξ of variables which are set in the lo-
cal states of agent i at step N ′. For example, assume that
auth@3(i, {NA, NB}) is given as an intended goal for NSPK.
Then auth@1(i, {NA}) is a pre–goal for the protocol derived
as above. It denotes that once the first step of agent i has
been completed, the agent is expected to share the nonce
NA with its intended communication partner.

We will assume that if a pre–goal fails it is impossible that
the protocol will eventually complete successfully. In more
detail, for a protocol with the intended goals Γ and one pre–
goal p we assume that:

AG (¬ p → AG (end → ¬Γ)) (1)

where end says that agents have completed all their protocol
steps, and ¬Γ says that at least one requirement in Γ fails.
In light of property (1) it seems reasonable to consider also
failures of pre–goals as protocol failures.

3. DETECTABILITY OF PROTOCOL
FAILURES

It is not uncommon to find insecure protocols deployed in
applications. For instance, IPSec, WEP, GSM, DNS, SSH1,
Kerberos have all been shown to be susceptible to attacks,
but are still widely used. Often, the cost of updating already
deployed systems might outweigh the risk of attacks. Once
a security protocol is found to be open to attacks a new
question arises: are attacks detectable? In security it is as-
sumed that an attack on a protocol leaves the agent subject
to the assault without sufficient information to determine
an attack has taken place. However, attacks may leave the
group G of agents with sufficient collective information to
infer an attack has taken place.

The relevant group G of information-sharing agents de-
pends on the particular scenario. The most natural candi-
date is a group of agents that represent the same principal.
This group models the concurrent protocol sessions run by
the same user on the same machine. But other groups may
also be of interest. For instance, one might wish to consider
only the subgroup of agents that represent the same princi-
pal and play the same protocol role. The group may model
a software client that collects information from different ses-
sions (e.g., a user running the SSH protocol on the client
side in two different terminals). In fact, one may even con-
sider a group of agents that represent different principals.
These groups are most relevant from the point of view of
a protocol attacker. The attacker would be interested in a
guarantee that he will remain undetectable no matter what
information is subsequently exchanged between honest par-
ticipants. Indeed, attacks that are in principle detectable

693

by a certain group can lead to retaliations undesired by the
attacker. As argued in [12], this fact can act as deterrence.

In this section we use temporal–epistemic logic to for-
malise subtle differences in the ability of a group G to detect
attacks and other protocol failures. Are attacks eventually
detectable on all possible future paths, or just on some? Are
attacks detectable without the intruder knowing this? Can
attack–related failures be immediately detected and can at-
tacks therefore be detected prior to their actual completion?
In future sections, the meaning of these specifications will
be explicitly denoted in MAS environments and their cor-
responding formulae will be checked against formal MAS
models for protocol executions.

Attack detectability.
We consider attack detectability specifications of the

form:

AG (β → � β) (A)

where the modality � is generated by the grammar:

� ::= DG | AF DG | EF DG | ¬�

and the condition β expresses that a “bad” state has been
reached. In the most basic case is β ::= ¬p and it states
that there has been an attack on an intended security goal
p. Below we consider more complex conditions β.

We say that condition β is instantly detectable by group G
if whenever β holds the group G knows this:

AG (β → DG β) (A.1)

We say that β is eventually detectable if whenever β holds
the group G will eventually know this:2

AG (β → AF DG β) (A.2)

We say that β is possibly detectable if whenever β holds it
is possible that the group G will eventually know this:

AG (β → EF DG β) (A.3)

We say that β is instantly undetectable if whenever β holds
the group G does not know this:

AG (β → (¬DG) β) (A.4)

We say that β is possibly undetectable if whenever β holds
it is possible that the group G will never know this:

AG (β → (¬(AF DG)) β) (A.5)

We say that β is forever undetectable if whenever β holds
the group G will never know this:

AG (β → (¬(EF DG)) β) (A.6)

Specifications (A.1) - (A.6) exhaust the modalities � up to
logical equivalence. Clearly, the logical–strength decreases
in specifications (A.1) to (A.3) while it increases in (A.4)
to (A.6). Moreover, for detectability specifications (A.1)
- (A.3) the logical–strength decreases with larger groups G.
On the other hand, for (un)detectability specifications (A.4)

2It is a customary assumption in the Dolev–Yao model that
the intruder is able to block messages. However, this is not
reasonable in all protocols, e.g., wireless protocols. Thus, we
sometimes restrict the path quantifiers to paths that are fair
in the sense that agents complete all their protocol steps.

- (A.6) the logical–strength decreases with more inclusive
groups G.

Simple attack–detectability. The most basic condi-
tions β are of type β ::= ¬Γ. This denotes that some se-
curity requirement p from a selected set Γ of requirements
fails. Note that in specifications we identify the set Γ with
the conjunction of the requirements included in the set. The
detectability schema (A) then becomes:

AG (¬Γ → �¬Γ)

stating that attacks on the security requirements
Γ are instantly/eventually/possibly detectable or in-
stantly/possibly/forever undetectable by the group G.

The selected set Γ of requirements might include only the
intended security goals of the protocol being analysed. How-
ever, it may be of interest to include also pre–goals in Γ;
failure of an such goal signals that the intruder is mounting
an attack and the protocol will not complete successfully.

Culprit–detectability. Some attacks on security proto-
cols require that the intruder is an “insider”: the intruder
knows from the outset the private keys and/or signatures
of some corrupt principal. If honest agents can detect the
identity of this corrupt principal then retaliation actions can
be more precisely targeted, strengthening the deterrence.

We consider therefore instances of (A.1) - (A.6) in which
the condition β states that a certain principal identity v
is corrupt: β ::= ¬Γ ∧ corrupt(v). The atomic proposi-
tion corrupt(v) holds if the intruder started the current run
knowing the private key of the principal with identity v. 3

In particular, the condition (¬Γ ∧ corrupt(v)) is possibly
detectable if:

AG (¬Γ ∧ corrupt(v) → EF DG (¬Γ ∧ corrupt(v))) (A.7)

i.e., whenever requirements Γ are attacked and v is corrupt
it is possible for group G to know this eventually.

Nested attack–detectability. It seems reasonable to
assume that possible culprit detectability (A.7), or even
the weaker possible attack–detectability (A.3) for β ::= ¬Γ
achieve an adequate deterrence in many possible scenarios.
Moreover, the perspective of being able to know whether his
attack have been detected can influnce future actions of the
intruder. Namely, the attacker could prepare for possible
retaliations. In other words, if the attacker is assured that
he will always know when he is detectable, he may be more
willing to conduct attacks.

Thus, we consider instances of schema (A) where the“bad”
states defined by β are those states in which an attack is
detectable:

β ::= �¬Γ | �(¬Γ ∧ corrupt(v))

where the attack–modality � includes no negations. Intu-
itively, β defines states that are “bad” from the point of view
of an attacker (i.e., his actions are detectable). To illustrate,
consider the states given by β ::= DG¬Γ, “bad” states in
which an attack on requirements Γ is detectable by a group
G of “honest” agents. Then, condition β itself is instantly
detectable by another group G′ of “hostile” agents if:

AG (DG¬Γ → DG
′ DG ¬Γ)

3For ease of presentation, we assume that there is at most
one corrupt principal in any run of the system I. More-
over, we assume that the name of the corrupt principal is
randomised in each run. In this way the corrupt identity is
initially unknown to honest agents.

694

i.e., whenever the “honest” group G knows that there is
an attack on requirements Γ, the “hostile” group G′ knows
that the “honest” group G knows this. Another more
complex instance of schema (A) views the states given by
β ::= AF DG¬Γ. These are “bad” states in which an attack
on requirements Γ is eventually detectable by the group G
of “honest” agents. Then, condition β is instantly detectable

by another group G
′

of “hostile” agents if:

AG (AF DG¬Γ → DG
′ AF DG ¬Γ)

i.e., whenever it is the case that the “honest” group G will
eventually know that there is an attack on requirements

Γ, the “hostile” group G
′

knows that the “honest” group
G knows this.

Above we illustrated on the “hostile” group G′ being able
to detect states that are “bad” from their point of view.
However, it is of interest to consider whether the “hos-
tile” group G′ can also detect states that are “good” from
their perspective. For instance, consider the states in which
attacks are undetectable by the “honest” group G. To
this end we assume conditions β with a negative attack–
modality � (i.e., a modality with an odd number of nega-
tions). For example, consider the states given by the condi-
tion β ::= (¬(EF DG))¬Γ,“good”states in which an attack
on requirements Γ is forever undetectable by the group G
of “honest” agents. Then, this condition β is eventually de-
tectable by the group G′ of “hostile” agents if:

AG (¬(EF DG)¬Γ → AF DG
′ ¬(EF DG) ¬Γ)

i.e., whenever it is the case that the “honest” group G will
never know that there is an attack on requirements Γ, the
“hostile” group G′ eventually knows that the “honest” group
G will never know this.

Attack–launch detectability.
It might be the case that neither attacks on intended goals

Γ nor attacks on pre–goals Γ′ are detectable, not even possi-
bly detectable. Nevertheless, attacks on the intended goals
Γ might be observable in a weaker sense: an attack on the in-
tended goals Γ cannot be mounted without the group learn-

ing in the meanwhile that some pre–goal in Γ
′

fails.

We say that attacks on pre–goals Γ
′
signal attacks on in-

tended goals Γ to group G if requirements Γ hold at least

until the group G knows that requirements Γ
′

fail:

A (Γ W DG¬Γ′) (B)

Note that attack–launch detectability (B) does not reduce
to an attack detectability specification (A). In particular

(B) may hold even if attacks on the pre–goals Γ
′

are not
possibly detectable (A.3) by the group G.

If attacks on the pre–goals Γ′ signal attacks on the in-
tended goals in Γ we can conclude that the flawed protocol
can be “patched” with the epistemic test DG¬Γ′. For in-
stance, a possible fix is for agents in G to abort as soon as
DG¬Γ′. Several flawed protocols have been “patched” in a
similar way [17], but with non-epistemic tests that compare
values across agents representing the same principal. Find-
ing the appropriate non-epistemic tests can be non–trivial.

By contrast, the relevant set Γ
′

of pre–goals can be derived
automatically with little cost from the protocol description,
as illustrated in Section 2.

4. CASE STUDY: KSL
In this section we illustrate a case study on detectability

of assaults against KSL [14], a variant of the Kerberos proto-
col. The next section reports on a framework for automatic
analysis of detectability specifications. Some of the results
in this section were provided by the automatic methodology
aforementioned.

The KSL protocol was designed with two distinct levels.
In the first level, a key establishment level, two parties A
and B use a trusted server S to establish a session key Kab
and a ticket. We refer to [14] for details. The key and
ticket are employed in the second level in order to mutually
authenticate A and B in three simple message exchanges.
The second level is a repeated authentication level since it
can be run several times, until the ticket expires.

1. A -> B : Ma, {Tb,A,Kab}Kbb

2. B -> A : {Ma}Kab, Mb

3. A -> B : {Mb}Kab

In step 1 principal A sends to B a nonce challenge Ma and
the ticket {Tb, A, Kab}Kbb established during the first level.
This ticket contains a timestamp Tb, the identity A and the
session key Kab also established in level one. All these are
locked with Kbb, a key known only by B. If the timestamp
Tb inside the ticket received by B has not expired yet, then
B responds in step 2 by encrypting the nonce Ma using the
preestablished session key Kab. B also sends along a nonce
challenge Mb of her own, which A then returns encrypted
with the session key Kab in step 3.

The purpose of KSL’s second–level is to ensure that when
an agent playing the role of B completes all its steps it then
shares the nonces Ma and Mb with its intended commu-
nication partner. Therefore, we consider the intended au-
thentication goal auth@3(ag, {Ma, Mb}) for each agent ag
playing the B–role in the second-level.

The Hwang attack.
The following attack on the repeated authentication level

is due to Hwang [13]:

i.1. I(A) -> B : Ma, {Tb,A,Kab}Kbb

i.2. B -> I(A): {Ma}Kab, Mb

ii.1. I(A) -> B : Mb, {Tb,A,Kab}Kbb

ii.2. B -> I(A) : {Mb}Kab, Mb’

i.3. I(A) -> B : {Mb}Kab

This attack assumes a first–level session completed between
principals alice and bob, playing an A–role and a B–role
respectively. On these grounds, the intruder impersonates
alice and initiates a second–level session i with bob. The
intruder has previously intercepted a B–role ticket in the
precedent first–level communication and in step i.1 sends
this ticket together with a nonce Ma to bob. In step i.2,
bob responds according to his honest B–role by sending the
nonce Ma encrypted with the session key Kab and the
challenge–nonce Mb to his assumed A–role interlocutor. In-
stead of completing this session, the intruder impersonates
alice again and initiates yet another second–level session ii
with bob. In this second session ii, the intruder uses bob as
an oracle to encrypt his own challenge–nonce Mb from the
initial i session. The intruder finally inserts the oracled en-
cryption {Mb}Kab back into session i as if it were coming
from alice, thus completing bob’s initial session in step i.3.

695

Informally, bob is fooled into believing that in session i
he is sharing values Ma and Mb respectively with alice,
while in fact he has been interacting with the intruder
impersonating alice. Formally, KSL’s authentication goal
auth@3(ag, {Ma, Mb}) fails for bob’s agent ag engaged in
session i.

Following the formalism in [5] and summarised in Sec-
tion 2, we consider a MAS model I to formalise KSL multi-
session executions.

Attack–launch detectability. On the MAS model I,
we can show that principal bob can detect preparations for
the attack prior to its actual completion. More precisely,
attacks on the pre–goal of authentication upon Ma at step
1 signals to bob attacks on the intended goal of authentica-
tion upon Ma and Mb at step 3. Formally, the intended au-
thentication goal holds at least until bob’s agents collectively
have sufficient information to infer that in one session, one
of these agents received a replayed nonce for an expectedly
fresh Ma. In other words, the corresponding attack–launch
detectability formula that holds on the IS model I is:

A (auth@3({Ma, Mb}) W Dbob ¬ auth@1(Ma)) (a)

where Dbob is the distributed knowledge modality DG for
the group G of agents representing bob and playing the B–
role in the second level, auth@3({Ma, Mb}) abbreviates the
the set {auth@3(ag, {Ma, Mb}) | ag ∈ G} of intended goals,
and auth@1(Ma) operates analogously for the pre–goals.
To explain, the group G of bob’s agents can compare the
value of Mb in each group member with the value of Ma
in each other group member; there has been an attack on
auth@1(Ma) if two values collide. Particularly, the epis-
temic test Dbob ¬ auth@1(Ma) can be reduced to the non–
epistemic test:

∃ag, ag′ ∈ G | ag.Mb = ag′.Mb

which in turn translates (a) into a purely temporal prop-
erty. However, the reduction of Dbob ¬ auth@1(Ma) to a
non-epistemic test is specific to a particular protocol and
may be non-trivial to determine. By contrast, attack–launch
specifications like (a) can be generated automatically as ex-
plained in Section 3 and later shown in Section 5.

Eventual attack–detectability. Despite attack–launch
detectability specification (a), attacks on the intended goals
auth@3({Ma, Mb}) are not instantly detectable by bob in
the sense of specification (A.1). In the MAS system I, the
attack–trace i.1 – i.3 for the Hwang attack above is indis-
tinguishable to bob from an execution trace in which the
intruder does not impersonate alice. This counterexample
trace of system I is shown below:

Counterexample E1

Trace of I, counterexample for DG¬auth@3({Ma, Mb}))
i’.1 A -> B: {Tb,A,Kab}Kbb, Ma

i’.2 B -> A: Mb, {Ma}Kab

ii’.1 I(A) -> B: {Tb,A,Kab}Kbb, Mb

ii’.2 B -> I(A): Mb’, {Mb}Kab

i’.3 A -> B: {Mb}Kab

We briefly explain the above execution exhibited in the
model I. As in the Hwang attack, the nonce Mb of bob’s
agent from the first session i′ is replayed to the agent rep-
resenting bob in another session ii′. The trace is therefore
indistinguishable to bob from the Hwang attack. Moreover,

note that in session i′ of the counterexample–execution prin-
cipal bob authenticates himself correctly upon values Ma and
Mb with alice.

Nonetheless, we can show that attacks on the intended
goals auth@3({Ma, Mb}) are eventually detectable by bob.
In other words, the following attack–launch detectability for-
mula holds on the IS model I:

AG (¬ auth@3({Ma, Mb}) → AF Dbob¬ auth@3({Ma, Mb}))
where the AF–modality quantifies only over execution paths
that are fair in the sense that each agent eventually com-
pletes all its steps.

We briefly explain the eventual detectability by bob in the
above. Assume that bob’s agent used as an oracle in ses-
sion ii of the Hwang attack has completed his execution.
By comparing the nonce received in this session with the
nonce generated in his first session i by another agent of
his, principal bob can infer than the nonce received did not
originate from alice as it purports to do. In other words,
bob’s agents collectively know that bob has completed ses-
sion ii without agreeing with alice, i.e., bob knows that the
intended authentication goal has been attacked.

The Lowe attack.
The discussion above assumes that a KSL principal does

not engage in the second level prior to completing all the
steps of the first level. However, KSL has also been in-
terpreted [17] as a protocol that allows a principal playing
the B–role to engage in a second–level session as soon as a
ticket has been established, but before actually completing
the final challenge–response step of the protocol’s first–level.
Again we refer to [14] for details.

As shown by Lowe, this permits more attacks against
KSL. For instance, alice can be fooled into generating a
B–role ticket {Ta, bob, Kab}Kaa and bob also be fooled into
generating another B–role ticket {Tb, alice, Kab}Kbb with
both tickets based on the same session key Kab. These can
then be used by the intruder for an impersonation attack on
the second level:

i.1. I(A) -> B : {Tb,A,Kab}Kbb, Ma

i.2. B -> I(A) : Mb, {Ma}Kab

ii.1. I(B) -> A : {Ta,B,Kab}Kaa, Mb

ii.2. A -> I(B) : Ma’, {Mb}Kab

i.3. I(A) -> B : {Mb}Kab

The attack begins like the Hwang attack above: the intruder
impersonates alice to enter second–level session i with bob.
However, in order to encrypt the nonce challenge Mb with
the session–key Kab the intruder does not use another agent
representing bob as oracle like in Hwang attack. Instead, in
step ii.1 the intruder engages an agent representing alice and
playing the B–role. The intruder finally completes session i
with bob in step i.3 by forwarding nonce Mb as previously
encrypted by alice in ii.2. We refer to the [13, 6] for details.
Like in the Hwang attack the agent representing bob in ses-
sion i is fooled into believing that he is sharing the values
Ma and Mb with alice.

We consider now a MAS model I formalising KSL mul-
tisession executions upon the relaxed interpretation in [17]
described above, i.e., possible initiation of second–level KSL
runs without full completion of prior KSL first level sessions.

Instant attack–detectability. On the MAS model I
we can show that the Lowe attack is instantly detectable by

696

a subgroup of agents representing principals bob and alice
together. More precisely, the group G of all second–level
agents can instantly detect attacks on the intended authen-
tication goals. In other words, the following detectability
formula holds on the IS model I:

AG (¬auth@3({Ma, Mb}) → DG ¬auth@3({Ma, Mb}))
In other words, by comparing values between group mem-
bers the group can (trivially) deduce whether any one group
member is fooled into completing the second-level without
agreeing with any other agent.

Possible attack–undetectability. On the MAS model
I we can show that the Lowe attack is possibly undetectable
by principal bob alone. More precisely, attacks on the in-
tended goals auth@3({Ma, Mb}) for bob’s agents are possi-
bly undetectable by the common effort of all bob’s agents.
In other words, the following (un)detectability formula holds
on the IS model I:

AG (¬auth@3({Ma, Mb}) → ¬AFDbob ¬auth@3({Ma, Mb}))
Under the MAS model I if the intruder conducts the Lowe
attack, then the resulting trace is indistinguishable to the
group of bob’s agents from a trace in which there is no at-
tack on the intended authentication goal. Unlike during the
Hwang attack, in the Lowe attack the challenge nonce Mb
of one of bob’s agents is replayed to an agent representing
alice rather than back to one of bob’s agents. Thus, there is
no way for bob to observe this replay even at later stages.

However it is not the case that attacks on the intended
goals auth@3({Ma, Mb}) are forever undetectable by bob in
the sense of (A.6). Since the Hwang attack is possible also
under this relaxed interpretation of KSL, there exists a path
where bob’s undetection is eventually refuted.

Nested detectability. On the MAS model I we can
show that even though attacks on the intended goals are not
always undetectable by bob, whenever they are undetectable
the intruder knows this is so. In other words, the following
(nested) detectability formula holds on the IS model I:

AG (¬Dbob ¬auth@3({Ma, Mb}) →
DI ¬Dbob ¬auth@3({Ma, Mb})

stating that the “good–from–the–intruder–point–of–view”
states given by ¬Dbob ¬auth@3({Ma, Mb}) are instantly de-
tectable by the intruder.

5. EXPERIMENTS
In this section we report on an automatic approach to

checking attack detectability in a variety of protocols. The
results here presented generalise the ones discussed for KSL
in the preceeding section.

Tools employed. PD2IS (Protocol Descriptions to Inter-
preted Systems) [5] is an open source compiler from CAPSL
[8] protocol descriptions into ISPL (Interpreted System Pro-
gramming Language), the input language to the model
checker MCMAS [15]. MCMAS is a BDD-based symbolic
model checker for multiagent systems supporting temporal
epistemic specifications.

In addition to CTLK security requirements which PD2IS
already supported, we extended the tool to generate
CTLK formulae encoding attack, attack-launch and culprit
(un)detectability specifications described in section 3.

By doing so, we have produced an extended toolkit [21]
that automatically analyses attack detection properties for
protocols given in the CAPSL language.

Experiment design and results. We selected a set of
well known authentication and key establishment protocols
from the SPORE repository [6]. Given a CAPSL protocol
description we used PD2IS to generate a corresponding ISPL
file for each instantiation scenario with four or fewer ses-
sions; each generated ISPL file was then passed to MCMAS
for verification. For each protocol we selected the models
that exhibited attacks and analysed the output of MCMAS
for what concerns satisfiability of the detectability specifi-
cations. Some of these results are summarised in Table 5.

Det Undet Launch Culprit

Scenario Groups
NSPK a F possible F possible

a1 → I b1 F forever F F
a1 ← b1 a1, b eventual possible T eventual
a2 → b1 a, b eventual possible T eventual

WMF a F forever N/A N/A
a1 → S1 b F forever N/A N/A
S1 → b1 a, b eventual instant N/A N/A
I → b1 S, b eventual possible T eventual
A. S-RPC a instant F F N/A
a1 → b1 a2 F possible N/A N/A
a2 → b2 b F forever F N/A

a2, b2 instant F T N/A
KSL a F forever F N/A

a1 1→ b1 a1 F forever F N/A

a1 1→ S b F possible T N/A

a1 2← b1 a1, b eventual instant T N/A

a1 2← b2 a2, b F possible T N/A

a2 2→ b3 a, b eventual F T N/A

Table 1: Attack detectability results.

In the table the first column denotes the scenario con-
sidered (see below); the second column denotes the de-
tectability group G considered; the third column reports
on whether attacks were found to be detectable instantly,
eventually, possibly, or never detectable (“F”) by the group
G considered; the forth column reports on whether attacks
were found to be undetectable instantly, possibly, or for-
ever detectable; the fifth column states the satisfaction of
detectability of attacks on pre-goals where it applies; the
last column reports the results for satisfaction of culprit de-
tectability formulae. “N/A” signifies that the corresponding
detectability specification does not apply for the correspond-
ing protocol or the corresponding group.

In more detail, in the first column the notation a1 → I in-
dicates that the NSPK scenario considered includes an agent
a1 representing principal alice in session 1 communicating
with a corrupt insider I. Analogously, a2 → b2 indicates that
the scenario also includes an agent a2 representing principal
alice in session 2 communicating with an agent representing

bob. The notation
i→ in the KSL scenario denotes a com-

munication direction within level i of the protocol. 4 The

4We assume the classical interpretation of level interleaving
in KSL (which does not allow for the Lowe attack).

697

letter S in the WMF scenario represents the server identity.
The letters a and b in the second column denote the groups
of all agents representing alice and bob respectively.

The table does not report the verification time of the
toolkit. These were found not to be problematic for the
protocols considered whenever the number of instances was
kept to a practically useful number. As an example, check-
ing NSPK [16] with 4 agents in a communication setting
enabling the Lowe attack against 218 specifications took
approximately 21 seconds on an Intel Core 2 Duo clocked
at 2.26GHz with 2.9 GB of memory, running Linux ker-
nel 2.6.27.7. The corresponding number of reachable global
states was in the region of 103.

6. CONCLUSIONS
In this paper we have formalised the notion of detectabil-

ity of attacks against security protocols in a MAS set-
ting. We showed the applicability of different flavours of
detectability on a MAS model for KSL, a variant of the
Kerberos protocol. We reported on the results of model-
checking automatically generated MAS models for security
protocols against a taxonomy of detectability formulae (gen-
erated inline with the models). The positive results demon-
strate that detectability of attacks in MAS inspired security
applications is a viable concept that can be used in more
complex protocols. At a technical level, while our discus-
sion was grounded on authentication and key–establishment
protocols, much can be extended to attacks on higher-level
protocols, such as e-voting.

Acknowledgments. The research described in this
paper is partly supported by EPSRC funded project
EP/E035655. The authors would like to thank Mads Dam
for valuable comments on earlier drafts of this paper.

7. REFERENCES
[1] A. Armando, D. Basin, Y. Boichut, Y. Chevalier,

L. Compagna, J. Cuéllar, P. Drielsma, P. Héam,
O. Kouchnarenko, J. Mantovani, S. Mödersheim,
D. von Oheimb, M. Rusinowitch, J. Santiago,
M. Turuani, L. Viganò, and L. Vigneron. The AVISPA
tool for the automated validation of internet security
protocols and applications. In Proc. of the 17th
International Conference on Computer Aided
Verification, pages 281–285, 2005.

[2] G. Bella, C. Longo, and L. Paulson. Verifying
second-level security protocols. In Theorem Proving in
Higher Order Logics, pages 352–366. Springer, 2003.

[3] B. Blanchet. An efficient cryptographic protocol
verifier based on prolog rules. In Proc. of the 14th
IEEE Computer Security Foundations Workshop,
pages 82–96. IEEE Computer Society Press, 2001.

[4] M. Boreale and M. Buscemi. A framework for the
analysis of security protocols. In Proc. of the 13th
International Conference on Concurrency Theory,
pages 483–498, 2002.

[5] I. Boureanu, M. Cohen, and A. Lomuscio. A
compilation method for the verification of
temporal-epistemic properties of cryptographic
protocols. In Joint Workshop on Automated Reasoning
for Security Protocol Analysis and Issues in the
Theory of Security, 2009.

[6] LSV ENS Cachan. Security Protocols Open
Repository. http://www.lsv.ens-cachan.fr/spore.

[7] D.Dolev and A.Yao. On the security of public-key
protocols. IEEE Transactionson Information Theory
29, pages 198–208, 1983.

[8] G. Denker and J. Millen. CAPSL integrated protocol
environment. In In Proc. of DARPA Information
Survivability Conference, pages 207–221. IEEE
Computer Society, 2000.

[9] J. Estevez-Tapiador. Moving web services to the secure
side. IEEE Distributed Systems Online, 5(1), 2004.

[10] T. Fábrega, J. Herzog, and J. Guttman. Strand
spaces: Proving security protocols correct. Journal of
Computer Security, 7(1):191–230, 1999.

[11] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Reasoning about Knowledge. MIT Press, 1995.

[12] G.Bella, S.Bistarelli, and F.Massacci. Retaliation
against protocol attacks. Journal of Information
Assurance and Security, 3:89–102, 2008.

[13] T. Hwang, N. Lee, C. Li, M. Ko, and Y. Chen. Two
attacks on neuman-stubblebine authentication
protocols. Information Processing Letters,
53(2):103–107, 1995.

[14] A. Kehne, J. Schőnwa̋lder, and H. Langendőrfer.
Multiple authentications with a nonce-based protocol
using generalized timestamps. In International
Conference on Computer Communications, 1992.

[15] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A
model checker for the verification of multi-agent
systems. Proc. of the 21th International Conference on
Computer Aided Verification, 5643, 2009.

[16] G. Lowe. An attack on the Needham-Schroeder
Public-Key authentication protocol. Information
Processing Letters, 56(3):131–133, 1995.

[17] G. Lowe. Some new attacks upon security protocols.
pages 162–169. Society Press, 1996.

[18] G. Lowe. Casper: A compiler for the analysis of
security protocols. In Proc. of the 10th IEEE
Computer Security Foundations Workshop, pages
18–30, 1997.

[19] A. Nacho and E. Aı̈meur. Building a multi-agent
system for automatic negotiation in web service
applications. Autonomous Agents and Multiagent
Systems, International Joint Conference on,
3:1466–1467, 2004.

[20] R. Needham and M. Schroeder. Using encryption for
authentication in large networks of computers.
Communications of the ACM, 21:393–399, 1978.

[21] PD2IS. Protocol compilation into interpreted systems,
0.90. http://pc2is.sourceforge.net, 2009.

[22] R. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key
cryptosystems. Communications of the ACM,
21:120–126, 1978.

[23] E. Shakshuki and S. Abu-Draz. Multi-agent system
architecture to trading systems. Journal of
Interconnection Networks, 6(3):283–302, 2005.

698

